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INTRODUCTION

A series of efforts has been made to estimate stress [ntensity factors of
radial cracks in a cylindrical pressure vessel. In order to facilitate the
finite element computations of such a cracked cylinder, a collapsed 12-node
triangular element with nodes shifted to 1/9 and 4/9 locations was developed
in Refereuce 1. The use of these elements around a crack tip has helped In
computing stress intensity factors for an array of uniformly distributed
radial cracks of equal depth emanating from the inner surface of a
thick-walled tube. Our finite element results, reported in Reference 2, are

in good agreement with results obtained by other methods (refs 3-5). To

reduce stress intensity factors at these cracks so the fatigue life of the
pressure vessel may be prolonged, {t becomes a common practice to use the
autofrettage process. This process produces a residual stress In a cylinder
following plastic deformation and elastic unloading. The residual stress is
compressive near the bore and i{s tensile near the outer surface. While it 1s
useful to retard the growth of cracks near the bore where the residual
compressive stress reduces the maximum tensile stress level due to a bare
pressure, it nay cause problems at cracks near the outer surface where the
final stress becomes the sum of residual tensile stress and the tenslle stress
due tn a pressure loading applied at the hore. There must be an optimal
degree of autofrettage when failures from both Inner and outer cracks ire

equally likely. The computations of stress intensity factors at inner and

outer cracks are more {nvolved if a cylinder undergoes a partial autofrettage.

References are listed at the end of this report.




One of the difficulties is the discrepancy anong predictions on restidual
stress distribatinn by different (nvestigators based on different assumptions.
References 6 through 13 reprasent a partlal list of works on this subject.
Another difficulty is the lack of an existing seneral purpose finite element
computer code which lhas the feature of treating an arbitrary initial stress
distribution. To develop a method of computing stress intensity factors in
this situation, the closed form expressions for residual stresses for an
incompressible, elaétlc-ideally plastic material (ref 7) are chosen. Ia
addition, an equivalent thermal load was found in Reference 14 which can be
prescribed at the nodes of the existling computer codes NASTRAN and APES (ref
15) to avoid the need of modification of coamputer codes in order to handle
Initial stresses. A summary of these methods and some results in stress
intensity computations for cracks In a partially autofrettaged cylinder is
given in Rererence 14. 0Nther e¢fforts on this subject are given in References
17 and 13. Further extension of the method developed for radial cracks in
cvlindrical pressure vessels of elastic-perfectly plastic materials to similar
zracks of strala-harlening wmater{als {s published in Reference 19.

Thus fir the strass intensity factors have been obtalned for uniformly
distrihated radial cracks of equal depth, The weakest configuriation was
found to ba two diametrically opposite cracks In non~antofrettaged cylinders.
For autofrettved cylinders, the weakest configuration I3 denendent on the
desree of autofrettape and the ratin of bore pressure t» yield strength. It
remiiqs true [a general that two dlametrically opposite cracks make a cylinder
the least resistant to fracture. iowever, fruom the actual ohservations of

frcacture of thick-walled tubes, it 1s a4 siagle major crack which has caused

(2"




the failure most frequently. The objective of this study 1is to compute the
change {n stress intensity factors at different crack tips when they grow from
an equal depth configuration to an unequal depth configuration. Based on some
finite element computations of stress intensity factors, a numerical method is
needed to estimate stress Intensity factors at each crack tip of a cracked
tube when radial cracks are unequal depths. Results in this report are
limited to non-autofrettaged, pressurized tubes. However, it is not difficult
to extend the method to partially autofrettaged tubes. Results will appear in

a separate report.

FINITE ELEMENT RESULTS OF STRESS INTENSITY

The 12-node quadrilateral isoparametric elements were used in this study.
The shape functions and the mathematical formulation of the element stiffness
" matrix are given In Reference 1. The crack tip elements are formed by
collapsing the quadrilateral elements into triangular elements around the
crack tip. On each side of a triangle emitting from the crack tip, the
locations of intermediate nodes are shifted from their usual 1/3 and 2/3 of
the length of the side to 1/9 and 4/9 of the length measured from the tip.
This simple technique gives the required singularity of the strain field at
the crack tip (ref 1). The stress Intensity factors can be computed quite
accurately from certain nodal displacements (ref l). A general purpose
computer program having {isoparametric elements such as NASTRAN may be used for
our study. However, the computer code APES i3 chosen due to many convenient

features of the program.
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Using similar notations as in Refarence 2, n denotes the number of radial
cracks, W is the wall ratio, Rp/Ry, where Ry and Ry are Llaner 4nd outer radifi
of the ring, respectively. The thickness of the wall, t = Ry - Ry, is used to
normalize the crack depth a. The dimensionless crack depth a/t is denoted by
c. A subscript {, 1t =1,2,...n, is used to name a crack. Let the Cartesian
coordinates be chosen such that the origin i{s at the center of the ring and a
radial crack ltes on the positive x-axis. This crack is assigned the number
one. The crack number increases counterclockwise from the x~axis. In this
study our finfte element computations are limited to W = 2 and n =2, 3 and 4
as shown [a Figure 1. Starting froa equal depth crack configuration, we
proceed to unequal depth configurdtions by a systematlc increment of crack
depth of aone, two, or three cracks. For a given a, let ¢ and X, be the crar
depth and stress iatensity factor, respectively, when all cracks are of the
same depth. Thesce quantities are used to aormalize the crack depth ¢y and the
mode [ stress latensity factor Xy for the i-th crack when cracks become

unequal depths. New notations « and N are iatroduced for these dimensionless

quantities
vi = effe , Ny = Ky/Kg I =1,2,...n (L

It Is true that some cracks are under mlxed mode 1 and mode 11 conditions when
unequal-depth-crack coafigurations are considered. ‘owever, ia this study the
effect of the shear mnde is assunad to be neglisgible and only the dominant
mode 1 stress Intensity factors are considered.

The idealizations used in this study for a ring with two, three, and four
ccacks are shown 11 rfigures 2, 3, and 4, respectively. Only the upper half of

a ring is shown due to symmetry consideration in finite element computations.




Equilateral triangles are used around a crack tip and these collapsed singular
elements are surrounded by a layer of quadrilateral elements, detail A of
Figure 2 and detail B of Figure 3. The finite element results of K, using the
refined meshes are shown in Figure 5 and are very close to results previously
obtained in Reference 2 using slightly different meshes around a crack tip.

For two diametrically opposed radial cracks, stress Intensity factors are
computed for various lengths of c¢) with a fixed value of ¢ = ¢ = 0.2. 1In a
graph of Ny, 1 = 1 and 2, versus pj, Figure 6, finite element results are
shown as dots. It can be seen that the dots may be jolned approximately by
straight lines. Similar results are also obtained and shown in the same graph
for cp = ¢ = 0.3,

For three radial cracks, the crack 2 and crack 3 remain the mirror image
of each other so that the problem is symmetric with respect to the x-axis.
Two subcases are considered. 1In the first case, the crack depths of both
crack 2 and crack 3 are fixed at ¢ = ¢3 = ¢ = 0.2 or 0.3. Stress intensity
factors at crack tips of crack 1 and crack 2 are computed for various values
of pyj. Finite element results are shown as dots for ¢ = 0.2 and as crosses
for ¢ = 0.3 in Figure 7. 1In the second case, the flrst crack has a fixed
crack depth and the other two cracks grow simultaneously at the same rate.
Finite element results for the latter case arc used only for the purpose of
checking nur numerical approximations.

In the case of four radial cracks, crack 4 13 kept as the mirror image of
crack 2. This symmetry reduces the problem to the upper half of the ring with
three cracks. There are three subcases which have been studied. The first

case is that only crack 1 grows. 1In the second subcase, crack 1 and crack 3
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are growing simultaneously at the same rate and crack 2 has a fixed crack

depth. The third case is just opposite to the first case. The crack 1l is

fixed in length with crack 2 and crack 3 growing at the same rate. Using the

idealization shown in Figure 4, finite element results of stress intensity
factors are obtained at each crack tip for various increments in crack depth
of the growing crack or cracks. The results for the first subcase are shown
as dots and crosses in Figure 8. The numerical results for the other two
subcases are not given since they are used only for checking the numerical

approximations by total differentials.

APPROXIMATION BY TOTAL DIFFERENTIALS
We assume that the differential change in stress intensity factor at
crack 1 diue to the differential change in length of crack j may be given by
aNi
dNy = -—-~ dp (2)
3pj j
The change 1in stress intensity factor due to a small change from Py to pj +
Apj can be expressed by
pj+ADj ")Ni
Ay = [ === dpj 3)
Py 3ej
If the 1increment Apj 1s divided into mj intervals

Apj = Alpj + Azpj + .. + Amjpj (4)

and if in any ianterval & there exists a quantity (OINi/3p§)g such that

Ny pj+Agpj Ny
(===)g Bgpy = | 357 dey )
ey pyrbdg-104 %P3




The iategral at the right hand side of Eq. (3) may be replaced by a summation

'“Q oWy
A.\]i = L (-—-—-) J(."“U)j (6)
g=1 9pj

Furthermore, if the change 1in stress inteansity ractor at crack tip {1 due to
simultaneous changes in length of two or more cracks may be approximated as
the sum of changes due to each crack length change, then the total change of
stress intensity factor at crack i due to length changes of all cracks may be
approximately expressed by
n mg Ny
ANy = ) (2= gbepy 7
j=1 =1 99j

The partial derivative (BNilapj)g may be calculated from the slope of the
tangent to the curve of Ny versus pj which is obtained by curve fittlng of
discreted points in the p-¥ plane from the finite element computations. The
change in Ny must be restricted to that due to the change in pj only. Figures
6 through 8 are used for this purpose with finite element values of Nj
obtained for various values of p]} with the crack depth of all other cracks
Eixed. A study of data points (p,N) in Figures 6 through 8 shows that a ;.
straizht line of the form

N-1 = m(p~-1) (8)
fits these points in a close approximation. The slope m of a least square

regression is given by

m o= J(Ng=1)(pg-1)/(py~1)2 (9)
i i

This slope may be used as the average value of the partlal derivatives dNj/dpy
tn a proper range of py; for a given set of values n and ¢. For n = 2, 3, and

4, the slopes m of linear regressions are computed and shown in Figures 6
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For a given equal depth crack

ERE

in

Ny

Gpj

Ny

9P

(]

cstimated by using Eqs. (7) and (10).

4

subcase 2 of n

3 and subcases 2 and 3 of

N

n = 4.

through 8 for ¢ = 0.2 or ¢ = 0.3 in a range 1 ¢ o < 1.8.

configuration we have

(1,5 = 1,2,...n)

(10)

tress inteasity factor at any crack tip of unequal radial cracks may be

The approximate method is applied to

The results are compared to

finite olement results and the difference is in general less than four

percent.

Two examples of the comparison are given in Table 1.

In

both

examples the depth of crack 1 was held constant and the depth of all other

cracks increased an amount of forty percent of the depth of crack 1.

TABLE 1.
[T - B
No. of Crack Crackuggggh_______L:i_k__._______t_i_% _____
n cy Other ¢ |F.E.| Anprox. [F.E.] Approx.
I SO O ]
3 0.2 0.28 2.26 2.29 2.69 2.79
4 0.3] 0.42 Lz.sz 2.52 ‘-3.60 3.50
L e e e e e e

F.E.

- ———

COMPARISON OF Kilp/ﬁY; FINLTE ELEMENT RESULTS VERSUS APPROXIMATIONS

3

Dpprox.

L“’"‘T
2.70

2.97

In the previous example of four-crack case, the stress intensity factor

of 3.6 at crack 2 or 4 is well above 3.3, the would be value L{f crack 1 has

not arrested but grew at the same rate.

The stress intensity factor at crack

2 due to the presence of crack 1 and 3 is considerably lower than 4.2, the

stress iatensity factor for two-crack case with ¢

0.42.

The faster increase

in stress {ntensity factor at crack 2 and crack 4, however, tends to change

the four-crack configuration to a crack configuration dominated bv two cracks.




The approximite method may be used to obtain results for crack
H configurations which are more difficult to compute by the finite element

method. For instince, a ring with three ridial cracks of different depths,

say ¢y = 0.2, cp = 0.26, and c3 = 9.3, the entlre ring with three crack tips
has to be considered by the finite element method. The method of total
differentials can easily yield the following estimates: Nj = 1.025, ¥y =
1.166, and Ny = 1.26. Taking Ke/p/ﬁf = 2.23 from Figure 5 for ua = 3, ¢ = 0,2,
we have Ki/p/Ry = 2.28, Ko/p/Ry = 2.60, and K3/p/Ry = 2.81.

For a given value of n, if we obtain JN/Op for many values of c, then a
plot of JON/up versus ¢ may be obtained. Such a plot for n = 3 is shown In
Figure 9. It shows that 3Ny/3py is nearly a linear function of c. fet
N2 /301 be a quadratfc function of ¢ of the form

ONg/9p = m'c? (lij
The curve which best fits data in the least square sense ls given by

n o= e HaNg/py) g/ e (12)
i i

¥

For the curve In Figure 9, m' is approximately 0.577. The equation of the
linear regression In Figure 9 is

3Ny /dpy = L.O77 ¢ + 10,295 (13
A plot such as Figure 9 or equations similar to Eqs. (11) and (13) may be used
to obtain approxinate values of UNj/dpyp at 1 specific value of ¢ for whioh oo
finite element results are avallable. Usiag aN[/3pp = 0.493/ and oNp /8y =
5.77 x 1073 for u = 3, ¢ = 0.1 in Eqs. (7) and (10) and taking Ke/p/if = 1.56
from Figure 5, our estimations are Ky/pv¥R} = 1.563, Kp/p/R] = 1.438 and

K3/p'Ry = 1.873 for the threc-crack case of ¢y = 0.1, ¢cp = 0.08, and vy =




0.15. Tn our computation a negative value of -0.2 was used for App in Eq. (7)
to ladicate the decrease in length of crack 2. The final estimation of stress
intens{ty factors depends slightly on the judicious choice of c¢. In general,
we take the smallest value of all crack lengths as ¢. In the previous
example, if ¢ = 0.08 is used, then c¢j would have a length Increment of more
than 80 percent. The estimations would have been Kllp/ﬁf = 1.538, Kz/plﬁf =
1.406, and K3/p/R] = 1.869. The deviatlons in this example are relatively
small. 1In some other cases the deviations become quite large when a length
change {s excessive. The choice of ¢ for shallow cracks is more important aad

will be discussed in the followinpg section.

APPROXTIMATIONS FOR SHALLOW CRACKS

The finite element methnd has some difficulty in calculating stress
intensity factors for very shallow cracks due to the small size of crack tip
elements required to solve such problems. For ¢ = 0.05, finite element
results are avallable in Reference 16 for various n. For shallow cracks with
¢ € 0.05, no finite element results are avallable since the accuracy of such
computations is questinnable. Some results for ¢ < 0.05 were obtained by
other methods. The most accurate results were reported in Reference 20 by
MMC, the modified mapping collocation method. However, the approximate
methods for shallow cracks discussed in Reference 21 are easy to use and yield
reasonably accurate results. The crosses in the range 0 < ¢ < 0,05 in Figure
5 are obtained from the approximate formula (ref 22) for a single crack

K = {1.12 gg(r=R}) - 0.68[gg(r=Ry) - ug(r=r.)]}Vmc (14)

10
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where vg(r=Ry) and vy(r=r.) are hoop stresses of an uncracked cylinder at r =

Ry and r = r., respectively. r. denotes the radius of the crack tlp.

¢

Using them and finite element results for ¢ = 0.05 as a gulde, the curves in

Figure 5 are extended in broken lines to the region ¢ < 0.1. The extended

curves agree well with available MMC results.

Using the approximate method Jdescribed in the preceding section and
values from Fiqures 5 and 9, stress iatensity factors can be easily estimated
for equally spaced shallow cracks. The judicious chuice of ¢ in shallow crack
cases Is very important. For small n and small ¢ the crack interaction is
weak. It is recommended to choose ¢ = ¢y for the computation of Kj. For
instance, n =3, ¢ = 0.91, ¢p = 0.02, and ¢y = 0.03, we obtain Ry/p Ry = N.52
by assuming the final crack configuration is reached from ¢ = ¢cp = ¢c3 = ¢ =
7.91. In the computation of Ky, we assume the final =rack configuration is
reached from c; = ¢y = c3 = ¢ = 0.02, The result is Ko/p/Ry = 0.73. For X3,
initial crack length ¢ = 0.03 is assumed, depths of crack 1 and crack 2 are
decreased from 0.03 to ¢y = 0.01 and ¢p = 9,02, the computed result is
K3/p/§f = 0.,90. The corresponding results by using Eq. (14) are Klfpfﬁf =
0.53, X9/p/Ry = 0.74

and Kg/p/§1-= 0.90. Another easier alternative method

for shallow cracks is the use of stress iatansity fiactors for equal-depth

cracks. For n = 3, when all crack depths are ¢ D.91, the stress intensity
factor at a crack tip is K/p/E; = 0.52. Similarly K/pfﬁf = 0.73 far ¢ = 0.02
and K/p/if = 0.90 for ¢ = 0.03. Ustiag these values to the crack of the right
crack depth in the unequal-depth crack coafiguratlon, all three approximate

methods for shallow crdacks are useful un to ¢ = 3,1, As a last example, n =

3, ¢ = 0.05, ¢p = 2.07, and ¢y = D.N9, the first method gives Kl/p/ﬁf =

11




1.122, X3/p/R] = 1.31, and K3/p/R} = 1.495. Equation (14) gives ¥K;/p/R| =
1.15, Ko/p/Ry = 1.347, and K3/p/Ry = 1.512. The use of equal crack depth

results gives Ki/p/Ry = 1.12, Ky/p/R{ = 1.31, and K9/pYR] = 1.50.

CONCLUSLONS
The 12-node quadrilateral isoparametric elements with collapsed singular
elements around a crack tip can be used to efficlently compute stress

intensity factors at tips of multiple radial cracks of unequal depths in a

thick-walled cylinder. Based on finite element results of some selected crack
conf igurations, the method of total differentials can estimate stress
intensity factors accurately. The approximate method requires only a small
number of finite element computations to obtain graphs such as Figure 7 and
Figure 9 for a given n, then the method can estimate stress Intensity factors
for an arbitrary set of unequal cracks without the need of finite element
computation for that particular crack configuratinn. The advantage of the
approxinate method is not only time saving, but also is able to glve an
estimate when the problem is not easily computed by the finite element

method.

For shallow cracks, the stress intensity factor at a crack tip may be
estimated from equal-depth crack configuratlon of that particular depth. This
is due to the fact that the change in stress intensity factor at a shallow
crack due to changes ln crack depths of other shallow cracks is very small.
Alternatively, each crick may be considered as a single crack since the
interactlon among shallow cracks ts very weak. Hence the stress {intensity

factor at a crack tip is approximately proportinnal to the square root of the

12




crack depth. A deeper crack will have a higher stress intengity factor which
in turn will cause further growth of the deeper crack. This process will
change a large number of shallow cracks into a crack coanfiguration consisting
of several dominant cracks. Further, if one or two cracks are growing more
than the rest, the increase in stress intensity factor at these deeper cracks
is greater than the increase of others. This will reduce the number of
dominant cracks and a single crack will eventually dominate. However, failure
may occur before reaching the final stage of single crack domination.

Although no autofrettage residual stress has heen considered in this
study, the approximate method aided by the method summarized in Reference 23
may be used for partially autofrettaged, pressurized, multiply-cracked

cylinders when crack depths are unequal.

13
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Figure 1. Schematic graphs of a thick-wall cylinder containing two, three, or i
four radial cracks.
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Figure 2. Finite element idealization for two diametrically opposite cracks
of unequal depths.
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Figure 3. Finite element idealization for a symmetric, three-crack problem.
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Figure 4. Finite element idealization for a symmetric, four—crack problem.
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Figure 5. Stress intensity factors as function of crack depth for various
numbers of radial cracks of equal depth.
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Figure 6. Stress intensity ratio, Ny = K;/K,, versus crack depth ratio, py =
cy/c, for symmetric two-crack cases.
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Figure 8. Stress intensity ratio, Ny = Ky/K,, versus crack depth ratio, pq =
cilc, for symmetric four-crack cases.
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